The spin and flavour dependence of high-energy photoabsorption

S.D. Bass^{1,2,a}, M.M. Brisudová^{3,b}

¹ Institut für Theoretische Kernphysik, Universität Bonn, Nussallee 14–16, D-53115 Bonn, Germany

 $^2\,$ Max Planck Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg, Germany

 $^3\,$ Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Received: 23 October 1998 Communicated by W. Weise

Abstract. We analyse the low x, low Q^2 polarised photoabsorption data from SLAC and use this data to make a first estimate of the high-energy part of the Drell-Hearn-Gerasimov sum-rule. The present status of spin dependent Regge theory is discussed.

PACS. 11.55.Hx Sum rules -12.40.Nn Regge theory, duality, absorptive/optical models -13.60.Hb Total and inclusive cross sections (including deep inelastic processes) -13.88.+e Polarization in interactions and scattering

1 Introduction

The Drell-Hearn-Gerasimov sum-rule [1] for spin dependent photoproduction and the Bjorken [2] and Ellis-Jaffe [3] sum-rules for polarised deep inelastic scattering provide important constraints for our understanding of the internal spin structure of the nucleon.

Consider polarised $\gamma - N$ scattering where σ_A and σ_P denote the two cross-sections for the absorption of a transversely polarised photon with spin anti-parallel σ_A and parallel σ_P to the spin of the target nucleon. We let q_{μ} and p_{μ} denote the momentum of the incident photon and target nucleon and define $Q^2 = -q^2$ and $\nu = p.q/m$ where m is the nucleon mass. The spin dependent part of the total γN cross-section is

$$(\sigma_A - \sigma_P) = \frac{4\pi\alpha^2}{m\mathcal{F}}(g_1 - \frac{Q^2}{\nu^2}g_2).$$
(1)

Here g_1 and g_2 are the nucleon's first and second spin dependent structure functions and \mathcal{F} is the photon flux factor.

For real photons, $Q^2 = 0$, the Drell-Hearn-Gerasimov sum-rule [1] (for reviews, see [4,5]) relates $(\sigma_A - \sigma_P)$ to the square of the nucleon's anomalous magnetic moment κ :

$$(\text{DHG}) \equiv -\frac{4\pi^2 \alpha \kappa^2}{2m^2} = \int_{\nu_{th}}^{\infty} \frac{d\nu}{\nu} (\sigma_A - \sigma_P)(\nu). \quad (2)$$

In deep inelastic scattering $(Q^2 \rightarrow \infty)$ the light-cone operator product expansion relates the first moment of the

structure function g_1 to the scale-invariant axial charges of the target nucleon by [6,7]

$$\int_{0}^{1} dx \ g_{1}^{p}(x, Q^{2})$$

$$= \left(\frac{1}{12}g_{A}^{(3)} + \frac{1}{36}g_{A}^{(8)}\right) \left\{1 + \sum_{\ell \ge 1} c_{\mathrm{NS}\ell} \alpha_{s}^{\ell}(Q)\right\}$$

$$+ \frac{1}{9}g_{A}^{(0)}|_{\mathrm{inv}} \left\{1 + \sum_{\ell \ge 1} c_{\mathrm{S}\ell} \alpha_{s}^{\ell}(Q)\right\} + \mathcal{O}(\frac{1}{Q^{2}}). \quad (3)$$

Here $g_A^{(3)}$, $g_A^{(8)}$ and $g_A^{(0)}|_{\text{inv}}$ are the isotriplet, SU(3) octet and scale-invariant flavour-singlet axial charges respectively. The flavour non-singlet $c_{\text{NS}\ell}$ and singlet $c_{\text{S}\ell}$ coefficients are calculable in ℓ -loop perturbation theory and have been calculated to $O(\alpha_s^3)$ precision [7].

The Bjorken sum-rule [2] for the isovector part of $\int_0^1 dxg_1$ has been verified to 10% accuracy in polarised deep inelastic scattering experiments at CERN [8,9], DESY [10] and SLAC [11,12]. These experiments have also revealed a four standard deviations violation of OZI in the flavour singlet axial charge $g_A^{(0)}|_{\rm inv}$ prompting many theoretical ideas about the internal spin structure of the nucleon — for recent reviews see [13].

At the present time, there are no direct measurements of $(\sigma_A - \sigma_P)$ at $Q^2 = 0$. Polarised real photon beam experiments are planned or presently underway at the CEBAF, ELSA, GRAAL, LEGS and MAMI facilities to investigate the spin structure of the nucleon at $Q^2 = 0$ with photon energies up to 6 GeV (or $\sqrt{s_{\gamma p}} \simeq 3.5 \text{GeV}$). These experiments will measure the low and intermediate energy contributions to the Drell-Hearn-Gerasimov sum-rule.

^a Steven.Bass@mpi-hd.mpg.de

^b brisuda@t5.lanl.gov

As we prepare for these experiments it is helpful to have some guide what to expect. Multipole analyses [14] of (unpolarised) pion photoproduction data suggest that the isosinglet part of the Drell-Hearn-Gerasimov sum-rule (-219µb) may be nearly saturated by nucleon resonance contributions with estimates ranging between -225µb and -222µb. In contrast, multipole estimates of nucleon resonance contributions to the isovector part of the DHG integral (+15µb) range between -65µb and -39µb — that is, different in sign and a factor of 2-4 bigger than the theoretical prediction for the isovector part of the fully inclusive sum-rule. The nucleon resonance contributions to (DHG) seem to saturate by $\nu = 1.2 \text{GeV}$ ($\sqrt{s_{\gamma p}} = 1.8 \text{GeV}$).

The present programme of polarised photoproduction experiments will measure the nucleon resonance contributions to (DHG). They will also measure contributions from non-resonant vector-meson-dominance [15] and strangeness production in the final state [4,16].

High-energy polarised real-photon beams would allow this programme to be extended into the Regge region and to make contact with deep inelastic measurements of g_1 at small Bjorken x. Possible experimental options include an upgraded 25GeV CEBAF machine ($\sqrt{s_{\gamma p}} \simeq 7$ GeV) and a polarised proton beam at HERA ($\sqrt{s_{\gamma p}} \simeq 50 - 250$ GeV).

Motivated by these experiments we make a first estimate of the high-energy part of the Drell-Hearn-Gerasimov sum-rule. We start in Sects. 2 and 3 with a phenomenological overview of spin dependent Regge theory and the present status of high-energy photoabsorption data from $Q^2 \simeq 0.25 \text{GeV}^2$ through to polarised deep inelastic scattering. In Sect. 4 we analyse the SLAC data on g_1 at low x and low Q^2 and use this data to estimate the high-energy part of the Drell-Hearn-Gerasimov sum-rule. We estimate that about 10% of the total Drell-Hearn-Gerasimov integral may come from large $\sqrt{s_{\gamma p}}$ (greater than 2.5GeV). This high-energy contribution is predominantly isotriplet. Finally, in Sect. 5, we make our conclusions.

2 g_1 at large $\sqrt{s_{\gamma p}}$

Regge theory makes a prediction for the large $s_{\gamma p}$ (= $(p+q)^2$) dependence of the spin dependent total photoproduction $(Q^2 = 0)$ cross-sections. It is often used to describe the small x behaviour of deep inelastic structure functions $(Q^2 | \text{arger than about } 2\text{GeV}^2)$.

The Regge prediction for the isovector part of $(\sigma_A - \sigma_P)$ is [17]:

$$\left(\sigma_A - \sigma_P\right)^{(p-n)} \sim s^{\alpha_{a_1}-1}, \quad (Q^2 = 0, \ s_{\gamma p} \to \infty).$$
 (4)

Here, α_{a_1} is the intercept of the isovector $a_1(1260)$ Regge trajectory. If one makes the usual assumption that the a_1 trajectory is a straight line running parallel to the (ρ, ω) trajectories, then one finds $\alpha_{a_1} = -0.4$. This value lies within the phenomenological range $(-0.5 \leq \alpha_{a_1} \leq 0)$ quoted by Ellis and Karliner [18].

For the isoscalar part of $(\sigma_A - \sigma_P)$, Regge theory predicts [17, 19, 20]:

$$\left(\sigma_A - \sigma_P \right)^{(p+n)} \sim N_0 s^{\alpha_{f_1} - 1} + N_g \frac{\ln \frac{s}{\mu^2}}{s} + N_{PP} \frac{1}{\ln^2 \frac{s}{\mu^2}},$$

$$(Q^2 = 0, \ s_{\gamma p} \to \infty).$$
(5)

Here, α_{f_1} is the intercept of the isoscalar $f_1(1285)$ and $f_1(1420)$ Regge trajectories – expected to be $\alpha_{f_1} \simeq -0.5$. The logarithm terms in (5) are associated with possible gluonic exchanges in the *t*-channel. The $\ln s/s$ term is induced by any vector short-range exchange-potential [19] — for example, two non-perturbative gluon exchange in the Landshoff-Nachtmann model of the soft pomeron [21] — and the $1/\ln^2 s$ term represents any two-pomeron cut contribution [20]. The mass parameter μ is taken as a typical hadronic scale (between 0.2 and 1.0GeV); the normalisation factors N_0 , N_g and N_{PP} in (5) are to be determined from experiment. Each of the possible Regge contributions in (4,5) yield a convergent Drell-Hearn-Gerasimov integral (2).

It is an open question how far one can increase Q^2 and still trust soft Regge theory to provide an accurate description of $(\sigma_A - \sigma_P)$. If one assumes that α_{a_1} is independent of Q^2 , then one expects [17,18] the isovector part of g_1 to exhibit the small x behaviour:

$$g_1^{(p-n)} \sim x^{-\alpha_{a_1}}, \quad (x \to 0, \ \forall Q^2).$$
 (6)

(Here, $g_1^{(p-n)} = (g_1^p - g_1^n)$.) High-energy, polarised photoabsorption data presently exist from $Q^2 \simeq 0.25 \text{GeV}^2$ through to polarised deep inelastic scattering. We discuss this data below. In Sect. 3 we concentrate on g_1 at small x and deep inelastic Q^2 (where the data is most accurate). We discuss the possible Q^2 dependence of high-energy photoabsorption in the transition region between photoproduction and deep inelastic scattering. In Sect. 4 we consider the low x, low Q^2 data from SLAC and SMC.

3 Deep inelastic measurements of g_1 at small x

Polarised deep inelastic data consistently indicate a strong isotriplet term in g_1 which rises at small x. The SLAC measurements of g_1 have the smallest experimental error in the x range (0.01 < x < 0.12).

In Fig. 1 we show the SLAC data¹ on the isovector $g_1^{(p-n)}$ and isoscalar $g_1^{(p+n)}$ (= $g_1^p + g_1^n$) parts of g_1 . We find good fits to this data:

$$g_1^{(p-n)} \sim (0.13) x^{-0.49}$$
 at $(0.01 < x < 0.12)$ (7)

¹ Our data set consists of the E-154 neutron data evolved to $Q^2 = 5 \text{GeV}^2$ [12] and the E-143 proton data $(Q^2 = 3 \text{GeV}^2)$ [11] together with the preliminary E-155 proton data points at x = (0.016, 0.024) and $Q^2 = 5 \text{GeV}^2$ [22]. Following Soffer and Teryaev [23] we combine this E-143, E-154 and E-155 data as if they were taken at the same Q^2 . The theoretical error induced by this procedure is of the order of 10%; it is small compared to the present experimental error on the data

Fig. 1. The SLAC data on g_1 . The upper curve shows the fit (12) to the isotriplet $g_1^{(p-n)}(x)$. The lower curve shows the fit (13) to the isosinglet $g_1^{(p+n)}(x)$ at $Q^2 \simeq$ 4GeV^2

and

$$g_1^{(p+n)} \sim -(0.23)x^{-0.56} + (0.28)(2\ln\frac{1}{x} - 1)$$

at $(0.01 < x < 0.12)$ (8)

with $\chi^2 = 2.19$ and 2.95 respectively (each for 6 degrees of freedom). The functional form $(2 \ln \frac{1}{x} - 1)$ is taken from the two non-perturbative gluon exchange model [21]. We obtain a better fit to $g_1^{(p+n)}$ by including it than if we use only a simple power term; in the latter case we obtain a best fit $g_1^{(p+n)} \sim (0.35)x^{+0.36}$ with larger χ^2 (=7.1 for 6 d.o.f.).

There are several important properties of this data. The isosinglet $g_1^{(p+n)}$ is small and consistent with zero in the measured small x range (0.01 < x < 0.05). Polarised gluon models [24] predict that $g_1^{(p+n)}$ may become strongly negative at smaller values of $x \ (\sim 10^{-4})$ but this remains

to be checked experimentally. The magnitude of $g_1^{(p-n)}$ is significantly greater than the magnitude of $g_1^{(p+n)}$ in the measured small x region. This is in contrast to unpolarised deep inelastic scattering where the small x region is dominated by isoscalar pomeron exchange.

If Regge theory is describing the g_1 data at small x, then we find $\alpha_{a_1} = +\frac{1}{2}$ — that is, roughly equal in magnitude but opposite in sign to the Regge prediction. At first glance, this result is surprising since Regge theory provides a good description of the NMC measurements of both the isotriplet and isosinglet parts of F_2 in the same small x range (0.01 < x < 0.1) at $Q^2 \simeq 5 \text{GeV}^2$.

In practice, the shape of g_1 at small x is Q^2 dependent. The Q^2 dependence is driven by DGLAP evolution and, at very small x (~ 10⁻³), by the resummation of $\alpha_s^l \ln^{2l} x$ radiative corrections — see eg. [25]. Next-to-leading order QCD analyses of polarised deep inelastic data have been carried out in [24, 26–28]. In the rest of this section we outline the important features of QCD evolution for the shape of $g_1^{(p-n)}$ at small x. We also make some phenomenological observations comparing the small x behaviour of $g_1^{(p-n)}$ with the small x behaviour of the unpolarised structure function $F_2^{(p-n)}/2x$.

$3.1 Q^2$ dependence

We define an effective intercept $\tilde{\alpha}_{a_1}(Q^2)$ to describe the small x behaviour of g_1 at finite Q^2 : $g_1^{(p-n)} \sim x^{-\tilde{\alpha}_{a_1}}$. The net Q^2 dependence of $\tilde{\alpha}_{a_1}$ depends strongly on the value of $\tilde{\alpha}_{a_1}$ which is needed to describe the leading twist part of $g_1^{(p-n)}$ at low momentum scales — for example $\mu_0^2 \sim 0.3 \text{GeV}^2$. Let $(\Delta u - \Delta d)(x)$ denote the leading twist (=2) part of $g_1^{(p-n)}$. DGLAP evolution of $(\Delta u - \Delta d)(x)$ from μ_0^2 to deep inelastic Q^2 shifts the weight of the distribution from larger to smaller values of x whilst keeping the area under the curve, $g_A^{(3)}$, constant. QCD evolution has the practical effect of "filling up" the small x region –

Fig. 2. Comparison of the isotriplet parts of the polarised $2xg_1$ (SLAC) and unpolarised F_2 (NMC) at $Q^2 \simeq 4 \text{GeV}^2$

increasing the value of $\tilde{\alpha}_{a_1}$ with increasing Q^2 . The scale independence of $g_A^{(3)}$ provides an important constraint on the change in $\tilde{\alpha}_{a_1}$ under QCD evolution. The closer that $\tilde{\alpha}_{a_1}(\mu_0^2)$ is to the Regge prediction -0.4, the more that $\tilde{\alpha}_{a_1}(Q^2)$ will grow in order to preserve the area under $(\Delta u - \Delta d)(x)$ when we increase Q^2 to values typical of deep inelastic scattering.

Badelek and Kwiecinski [29] have investigated the effect of DGLAP and $\alpha_s \ln^2 x$ resummation on the small x behaviour of $g_1^{(p-n)}$. They find a good fit to the data using a flat small-x input distribution at $Q_0^2 = 1 \text{GeV}^2$. In their optimal NLO QCD fit to polarised deep inelastic data Glück, Reya, Stratmann and Vogelsang [27] used a rising input at $\mu_0^2 \simeq 0.3 \text{GeV}^2$.

Whilst QCD evolution offers a possible explanation of the rise in $g_1^{(p-n)}$ at small x in deep inelastic scattering, it does not well constrain the value of $\tilde{\alpha}_{a_1}$ at low Q^2 . In order to resolve the Q^2 dependence of $\tilde{\alpha}_{a_1}$ it would be helpful to have an accurate measurement of the small x behaviour of $g_1^{(p-n)}$ as a function of Q^2 in the transition region between photoproduction and deep inelastic scattering. In the rest of this paper we take $\alpha_{a_1} = \tilde{\alpha}_{a_1}(Q^2 = 0)$ as a free parameter between $-\frac{1}{2}$ and $+\frac{1}{2}$.

3.2 Comparison of $(g_1^p - g_1^n)$ and $(F_2^p - F_2^n)$

It is interesting to compare the isotriplet part of g_1 with the isotriplet part of F_2 (the nucleon's spin independent

$$2x(g_1^p - g_1^n) = \frac{1}{3}x \left[(u + \overline{u})^{\uparrow} - (u + \overline{u})^{\downarrow} - (d + \overline{d})^{\uparrow} + (d + \overline{d})^{\downarrow} \right] \\ \otimes \Delta C_{NS}$$
(9)

structure function). In the QCD parton model

and

$$(F_2^p - F_2^n) = \frac{1}{3}x \left[(u + \overline{u})^{\uparrow} + (u + \overline{u})^{\downarrow} - (d + \overline{d})^{\uparrow} - (d + \overline{d})^{\downarrow} \right] \otimes C_{NS}.$$
(10)

Here u and d denote the up and down flavoured quark distributions polarised parallel (\uparrow) and antiparallel (\downarrow) to the target proton and ΔC_{NS} and C_{NS} denote the spindependent and spin-independent perturbative QCD coefficients [30].

In Fig. 2 we show the SLAC data on $g_1^{(p-n)}(x)$ together with the NMC measurement [31] of $F_2^{(p-n)}(x)$ at $Q^2 = 4 \text{GeV}^2$. The NMC parametrised their small x data using the fit:

$$(F_2^p - F_2^n) \sim (0.20 \pm 0.03) x^{0.59 \pm 0.06}$$

at $(0.004 < x < 0.15)$. (11)

The data in Fig. 2 clearly exhibits the inequality

Table 1. Small
$$Q^2$$
 data from E-143 and SMC

$$2x(g_1^p - g_1^n) > (F_2^p - F_2^n)$$

at (0.01 < x < 0.12). (12)

The inequality (12) persists in the deep inelastic data up to $x \sim 0.4$. Recent measurements from SMC [32] are consistent with (12) down to $x \sim 0.005^{2}$

The ratio of the polarised to unpolarised structure function data in Fig. 2 is roughly constant $2xg_1^{(p-n)}/F_2^{(p-n)} \simeq 1.7$ over the small x range (0.01 < x < 0.12). Keeping in mind that one does not normally expect the constituent quark model to describe small x physics, the constituent quark model to describe binar $x p_{1,p}$ size, it is interesting to observe that the ratio of the measured structure functions $2xg_1^{p-n}/F_2^{p-n} \simeq 1.7$ is consistent with the simple SU(6) prediction $2xg_1^{p-n}/F_2^{p-n} = \frac{5}{3}$ in the xrange 0.01 < x < 0.12. (The ratio $2xg_1^{(p-n)}/F_2^{(p-n)} \simeq \frac{5}{3}$ persists in the data up until $x \simeq 0.2$. At larger x it slowly decreases towards unity as the structure functions $2xg_1^{(p-n)}$ and $F_2^{(p-n)}$ fall away to zero when x approaches one [33] – consistent with the prediction of QCD counting rules.)

If Regge theory (with $\alpha_{a_1} = -0.4$) does work at $Q^2 = 0$, then we expect the protoproduction cross-sections to behave as $(\sigma_A - \sigma_P)^{(p-n)} \sim s_{\gamma p}^{-1.4}$ and $(\sigma_A + \sigma_P)^{(p-n)} \sim$ $s_{\gamma p}^{-0.5}$ when $s_{\gamma p}$ becomes large (greater than a few GeV²). Regge theory predicts that $(\sigma_A - \sigma_P)^{(p-n)} < (\sigma_A +$ $\sigma_P)^{(p-n)}$ when $s_{\gamma p} \to \infty$. If the Regge predictions are valid for low Q^2 , then we expect the inequality (12) to reverse at some Q_0^2 between photoproduction and deep inelastic Q^2 . This can be checked in future experiments at CEBAF and HERA.

4 A first estimate of the high-energy part of the DHG integral

4.1 g_1 at low Q^2

The SLAC E-143 [34] and SMC [9,32] experiments have measured the spin asymmetry

$$A_1 = \frac{\sigma_A - \sigma_P}{\sigma_A + \sigma_P} \tag{13}$$

for both proton and deuteron targets over a wide range of Q^2 , including between 0.25 GeV² and 0.80 GeV².

We list the SLAC [34] and SMC [32] low x, low Q^2 data in Table 1. This data has the following general features.

Q^2	$s_{\gamma p}$	A_1^p	A_1^d
0.32	9.7	0.053 ± 0.030	-0.020 ± 0.032
0.65	18.8	0.069 ± 0.018	$+0.039 \pm 0.046$
0.37	7.9	0.110 ± 0.033	$+0.004 \pm 0.034$
0.79	15.9	0.117 ± 0.019	$+0.023 \pm 0.034$
0.42	5.7	0.095 ± 0.037	$+0.031 \pm 0.040$
0.71	9.0	0.129 ± 0.038	-0.010 ± 0.043
0.47	4.2	0.110 ± 0.048	$+0.022 \pm 0.057$
0.25	278	-0.024 ± 0.037	-0.067 ± 0.040
0.30	273	-0.024 ± 0.043	$+0.052 \pm 0.046$
0.34	309	$+0.060 \pm 0.051$	$+0.046 \pm 0.052$
0.38	272	$+0.054 \pm 0.028$	-0.028 ± 0.032
0.46	271	$+0.048 \pm 0.033$	-0.069 ± 0.037
0.55	290	-0.060 ± 0.034	$+0.052 \pm 0.037$
0.59	257	$+0.004 \pm 0.029$	$+0.076 \pm 0.035$
0.70	280	$+0.030 \pm 0.030$	-0.043 ± 0.035
	Q^2 0.32 0.65 0.37 0.79 0.42 0.71 0.47 0.25 0.30 0.34 0.38 0.46 0.55 0.59 0.70	Q^2 $s_{\gamma p}$ 0.32 9.7 0.65 18.8 0.37 7.9 0.79 15.9 0.42 5.7 0.71 9.0 0.47 4.2 0.47 4.2 0.25 278 0.30 273 0.34 309 0.38 272 0.46 271 0.55 290 0.59 257 0.70 280	$\begin{array}{c cccc} Q^2 & s_{\gamma p} & A_1^p \\ \hline \\ \hline \\ 0.32 & 9.7 & 0.053 \pm 0.030 \\ 0.65 & 18.8 & 0.069 \pm 0.018 \\ 0.37 & 7.9 & 0.110 \pm 0.033 \\ 0.79 & 15.9 & 0.117 \pm 0.019 \\ 0.42 & 5.7 & 0.095 \pm 0.037 \\ 0.71 & 9.0 & 0.129 \pm 0.038 \\ 0.47 & 4.2 & 0.110 \pm 0.048 \\ \hline \\ \hline \\ \hline \\ 0.25 & 278 & -0.024 \pm 0.037 \\ 0.30 & 273 & -0.024 \pm 0.043 \\ 0.34 & 309 & +0.060 \pm 0.051 \\ 0.38 & 272 & +0.054 \pm 0.028 \\ 0.46 & 271 & +0.048 \pm 0.033 \\ 0.55 & 290 & -0.060 \pm 0.034 \\ 0.59 & 257 & +0.004 \pm 0.029 \\ 0.70 & 280 & +0.030 \pm 0.030 \\ \hline \end{array}$

First, the isoscalar deuteron asymmetry A_1^d is very small and consistent with zero in both the E-143 and SMC low Q^2 bins. Second, there is a clear positive proton asymmetry in the E-143 data, signalling a strong isotriplet term in $(\sigma_A - \sigma_P)$ at $\sqrt{s_{\gamma p}} \simeq 3.5 \text{GeV}$. At higher $\sqrt{s_{\gamma p}} \simeq 16.7 \text{GeV}$, the combined SMC A_1^p data is consistent with zero. Further data will come from the forthcoming HERMES measurements of g_1 at low x and low Q^2 with $\sqrt{s_{\gamma p}} \simeq 7 \text{GeV}$.

Due to the wide separation in $s_{\gamma p}$ range measured in E-143 and SMC, we combine the low Q^2 data to obtain one point corresponding to each experiment. This is shown in Table 2. We make two cuts:

- 1. keeping $\sqrt{s_{\gamma p}} \ge 2.5 \text{GeV}$ to ensure that our data set is well beyond the resonance region and including all such data that the mean Q^2 is kept below 0.5GeV^2 for each experiment. (In practice, this amounts to a common Q^2 cut of 0.7GeV^2 and yields a mean $Q^2 = 0.45 \text{GeV}^2$ for each experiment.) 2. including all data at $\sqrt{s_{\gamma p}} \ge 2$ GeV and $Q^2 \le 0.8$ GeV².

In what follows, we work with Cut (a). This choice of cut is a compromise between keeping Q^2 as low as possible and including the maximum amount of data. The choice $Q_{\rm max}^2 \simeq 0.5 {\rm GeV}^2$ is motivated by the HERA data [35,36] on $(\sigma_A + \sigma_P)$ which rises with increasing $\sqrt{s_{\gamma p}}$ according to soft Regge theory up to $Q^2 \simeq 0.5 \text{GeV}^2$. At larger Q^2 the HERA data exhibits evidence of Q^2 dependence in the effective Regge intercepts for high-energy, virtual photoabsorption. The low Q^2 asymmetry measurements in Table 1 show no clear Q^2 dependence in either experiment.

To make a first estimate of the spin asymmetry at $Q^2 = 0$ we shall assume that the large $\sqrt{s_{\gamma p}} A_1$ is approximately independent of Q^2 between $Q^2 = 0$ and $Q^2 \simeq 0.5$ GeV². Since the E-143 data at lower $\sqrt{s_{\gamma p}}$ exhibits a clear positive signal in A_1^p at low Q^2 we choose to normalise

 $^{^{2}}$ The inequality (12) corresponds to the parton inequality $(d+\overline{d})^{\downarrow}(x) > (u+\overline{u})^{\downarrow}(x)$. This parton inequality holds both at leading order and also at next-to-leading order. The coefficients C_{NS} and ΔC_{NS} have the perturbative expansion $\delta(1-x) + \frac{\alpha_s}{2\pi}f(x)$. They are related (in the $\overline{\text{MS}}$ scheme) by [30] $\Delta C_{NS}(x) = C_{NS}(x) - \frac{\alpha_s}{2\pi}\frac{4}{3}(1+x)$. Since the coefficient C_{NS} is greater than ΔC_{NS} at next-to-leading order, it follows that the parton-model inequality $(d + \overline{d})^{\downarrow}(x) > (u + \overline{u})^{\downarrow}(x)$ is more pronounced at next-to-leading order than at leading order

Cuts	$\langle Q^2 \rangle$	$s_{\gamma p}$	A_1^p	A_1^d
(a) $\langle Q^2 \rangle \leq 0.5 \text{GeV}^2, s_{\gamma p} \geq 7 \text{GeV}^2$				
	0.45	12	0.077 ± 0.016	$+0.008 \pm 0.022$
	0.45	279	0.011 ± 0.013	$+0.002 \pm 0.014$
(b) $Q^2 \leq 0.8 \text{GeV}^2, s_{\gamma p} \geq 4 \text{GeV}^2$				
	0.53	10	0.098 ± 0.013	$+0.016 \pm 0.016$
	0.45	279	0.011 ± 0.013	$+0.002 \pm 0.014$

Table 2. A_1 at large $s_{\gamma p}$ and low Q^2

Fig. 3. The real photon asymmetry A_1^p as a function of \sqrt{s} for different Regge behaviours for $(\sigma_A - \sigma_P)$: given entirely by (1a) the (a_1, f_1) terms in (2) with Regge intercept either $-\frac{1}{2}$ (conventional) or (1b) $+\frac{1}{2}$; (2) by 2/3 isovector (conventional) a_1 and 1/3 two non-perturbative gluon exchange contributions at $\sqrt{s} = 3.5 \text{GeV}$; (3) by 2/3 isovector (conventional) a_1 and 1/3 pomeron-pomeron cut contributions at $\sqrt{s} = 3.5 \text{GeV}$

to E-143. For the total photoproduction cross-section we take

$$\sigma_A + \sigma_P) = 67.7 s_{\gamma p}^{+0.0808} + 129 s_{\gamma p}^{-0.4545} \tag{14}$$

(in units of μ b), which is known to provide a good Regge fit for $\sqrt{s_{\gamma p}}$ between 2.5GeV and 250GeV [37]. (Here, the $s_{\gamma p}^{+0.0808}$ contribution is associated with pomeron exchange and the $s_{\gamma p}^{-0.4545}$ contribution is associated with the isoscalar ω and isovector ρ trajectories.) Multiplying A_1^p by the value of $(\sigma_A + \sigma_P)$ at $\sqrt{s_{\gamma p}} = 3.5$ GeV, we make a first estimate

$$(\sigma_A - \sigma_P) \simeq +10\mu b$$
 at $(Q^2 = 0, \sqrt{s_{\gamma p}} = 3.5 \text{GeV}).$ (15)

The small isoscalar deuteron asymmetry A_1^d indicates that the isoscalar contribution to A_1^p in the E-143 data is unlikely to be more than 30%. In Fig. 3 we show the asymmetry A_1^p as a function of $\sqrt{s_{\gamma p}}$ between 2.5 and 250 GeV for the four different would-be Regge behaviours for $(\sigma_A - \sigma_P)$: that the high energy behaviour of $(\sigma_A - \sigma_P)$ is given

- 1. entirely by the (a_1, f_1) terms in (4,5) with Regge intercept either (1) $-\frac{1}{2}$ (conventional) or (2) $+\frac{1}{2}$ (motivated by the observed small x behaviour of $g_1^{(p-n)}$ in deep inelastic scattering),
- 2. by taking 2/3 isovector (conventional) a_1 and 1/3 two non-perturbative gluon exchange contributions at $\sqrt{s} = 3.5 \text{GeV},$
- 3. by taking 2/3 isovector (conventional) a_1 and 1/3 pomeron-pomeron cut contributions at $\sqrt{s_{\gamma p}} = 3.5 \text{GeV}.$

(In Fig. 3 we take the mass parameter in the Regge fit, (5), as $\mu^2 = 0.5 \text{GeV}^2$.) The SMC low x, low Q^2 data are consistent with each of the four curves in Fig. 3. If the polarised proton beam option is realised at HERA, it will be possible to measure A_1^p to an accuracy of 0.0003 at $\sqrt{s_{\gamma p}}$ between 50 and 250 GeV assuming an integrated luminosity $\mathcal{L} \simeq 500 \text{pb}^{-1}$ [38].

4.2 The high-energy part of the (DHG) integral

We now estimate the high-energy part of the Drell-Hearn-Gerasimov sum-rule using low Q^2 Regge theory. Since $(\sigma_A - \sigma_P)$ in (15) is predominantly isotriplet we first fit a Regge form $(\sigma_A - \sigma_P) \sim s_{\gamma p}^{\alpha - 1}$ through the value $(\sigma_A - \sigma_P) = +10\mu$ b in (15) and allow α to vary between $-\frac{1}{2}$ and $+\frac{1}{2}$. This range of α is motivated by our discussion of the Q^2 dependence of g_1 in Sect. 3.1. We believe that it represents a generous variation over the range of possible values for α_{a_1} and α_{f_1} in the Regge formulae (4,5). Taking into account the error on the E-143 measurement of A_1^p , we estimate $+25\pm10\mu$ b for the high-energy ($\sqrt{s_{\gamma p}} \geq 2.5$ GeV) contribution to the Drell-Hearn-Gerasimov sum-rule for a proton target. This is about 10% of the sum-rule.

We consider other possible Regge contributions to $(\sigma_A - \sigma_P)$. Any two-pomeron cut contribution to $(\sigma_A - \sigma_P)$ decays more slowly with increasing $s_{\gamma p}$ than the other possible Regge contributions in (4,5). Consider the scenario where the value of $(\sigma_A - \sigma_P)$ in (15) is made up of a 1/3 isoscalar two-pomeron cut and 2/3 combination of a_1 and f_1 contributions. The high-energy

 $(\sqrt{s_{\gamma p}} \geq 2.5 \text{GeV})$ part of the Drell-Hearn-Gerasimov sumrule becomes $+26 \pm 5\mu$ b if we use the "conventional" value $(\alpha = -\frac{1}{2})$ for the intercept of the a_1 and f_1 trajectories and $+33 \pm 7\mu$ b if we use the "exotic" value $(\alpha = +\frac{1}{2})$. We believe that the 1/3 two-pomeron cut scenario gives a reasonable upper bound on the isosinglet contribution to (15) because of the small deuteron asymmetries in Table 2 and because there is no evidence for any two-pomeron cut contribution in the high Q^2 polarised deep inelastic data [9]. (A two-pomeron cut contribution would lead to a sharp rise in the absolute value of $g_1^{(p+n)}$ at small x.) The "conventional" a_1 scenario is consistent with our preferred estimate $+25 \pm 10\mu$ b whereas the two-pomeron cut with "exotic" a_1 scenario lies at the margins of it.

Our estimate $+25\pm10\mu {\rm b}$ is intended as a guide for future experiments.

5 Conclusions

Using the SLAC data on g_1 at low x and low Q^2 we estimate that about 10% of the Drell-Hearn-Gerasimov sum-rule comes from the Regge region $\sqrt{s_{\gamma p}} > 2.5 \text{GeV}$. This Regge contribution $(+25 \pm 10\mu b)$ is predominantly isotriplet. It is consistent with the multipole estimates of the low-energy part of the Drell-Hearn-Gerasimov sumrule which suggest that the isosinglet part of the (DHG) integral may be all but fully saturated by the nucleon resonances and that a $\simeq +65\mu b$ contribution to the isotriplet part of the sum-rule comes from non-resonance physics. Experiments at CEBAF, ELSA, GRAAL, LEGS and MAMI will measure the low and medium energy contributions to the (DHG) integral up to $\sqrt{s_{\gamma p}} \simeq 3.5 \text{GeV}$. Highenergy polarised photon beams would enable these measurements to be continued into the Regge region and to make a more accurate test of the Drell-Hearn-Gerasimov sum-rule.

Spin dependent Regge theory makes a prediction for the high-energy part of $(\sigma_A - \sigma_P)$ at $Q^2 = 0$. It is presently unknown how high in Q^2 this Regge behaviour is supposed to apply. Certainly, it does not provide a good description of $g_1^{(p-n)}$ at deep inelastic Q^2 where $g_1^{(p-n)} \sim x^{-0.5}$ in contrast with the naive Regge prediction $g_1^{(p-n)} \sim x^{+0.4}$. Some insight may come from the CEBAF experiment E-97-003 [39] which will make a precision measurement of the Q^2 dependence of the Regge onset in $(\sigma_A - \sigma_P)$ at $\sqrt{s_{\gamma p}} \sim 3.5$ GeV between Q^2 of 0.02 and 0.5 GeV² and from the HERMES low Q^2 data.

It is a pleasure to thank N. Bianchi, A. Brüll, J-P. Chen, A. De Roeck, E. De Sanctis, G. Garvey, M. Glück, T. Goldman, P.V. Landshoff, G. Rädel, E. Reya and A.W. Thomas for help-ful discussions about g_1 and DHG physics. Support from the Alexander von Humboldt Foundation (SDB) and the U.S. Department of Energy (MMB) is gratefully acknowledged.

References

- S.D. Drell and A.C. Hearn, Phys. Rev. Lett. **162** (1966) 1520; S.B. Gerasimov, Yad. Fiz. **2** (1965) 839
- J.D. Bjorken, Phys. Rev. 148 (1966) 1467; Phys. Rev. D1 (1970) 1376
- J. Ellis and R.L. Jaffe, Phys. Rev. D9 (1974) 1444; (E) D10 (1974) 1669
- 4. S. D. Bass, Mod. Phys. Lett. A12 (1997) 1051
- 5. D. Drechsel, Prog. Part. Nucl. Phys. 34 (1995) 181
- 6. J. Kodaira, Nucl. Phys. **B165** (1980) 129
- 7. S.A. Larin, Phys. Lett. **B334** (1994) 192; **404** (1997) 153
- EMC Collaboration (J Ashman et al.) Phys. Lett. B206 (1988) 364; Nucl. Phys. B328 (1989) 1
- The Spin Muon Collaboration (D. Adams et al.), Phys. Lett. B396 (1997) 338; (B. Adeva et al.), Phys. Lett. B412 (1997) 414
- The HERMES Collaboration (K. Ackerstaff et al.), Phys. Lett. B404 (1997) 383
- The E-143 Collaboration (K. Abe et al.), Phys. Rev. Lett. 74 (1995) 346
- The E-154 Collaboration (K. Abe et al.), Phys. Rev. Lett. 79 (1997) 26
- H.-Y. Cheng, Int. J. Mod. Phys. A11 (1996) 5109; M. Anselmino, A. Efremov and E. Leader, Phys. Rept. 261 (1995) 1
- I. Karliner, Phys. Rev. D7 (1973) 2717; R.L. Workman and R.A. Arndt, Phys. Rev. D45 (1992) 1789; A.M. Sandorfi, C.S. Whisnant and M. Khandaker, Phys. Rev. D50 (1994) R6681
- M. Anselmino, E. Leader and B.L. Ioffe, Yad. Fiz. 49 (1989) 214
- H.W. Hammer, D. Drechsel and T. Mart, nucl-th/9701008 (1997)
- 17. R.L. Heimann, Nucl. Phys. B64 (1973) 429
- 18. J. Ellis and M. Karliner, Phys. Lett. **B213** (1988) 73
- 19. F.E. Close and R.G. Roberts, Phys. Lett. **B336** (1994) 257
- L. Galfi, J. Kuti and A. Patkos, Phys. Lett. B31 (1970)
 465; F.E. Close and R.G. Roberts, Phys. Rev. Lett. 60 (1988) 1471
- S.D. Bass and P.V. Landshoff, Phys. Lett. B336 (1994)
 537; P.V. Landshoff and O. Nachtmann, Z Physik C35 (1987) 405
- C. Young, in Proc. Workshop on Deep Inelastic Scattering off Polarized Targets: Theory meets Experiment, DESY-Zeuthen 1997, eds. J. Blümlein et al. (DESY report 97-200, 1997)
- 23. J. Soffer and O.V. Teryaev, Phys.Rev. D56 (1997) 1549
- 24. G. Altarelli, R.D. Ball, S. Forte and G. Ridolfi, Nucl. Phys. B496 (1997) 337
- Various contributions in Proc. Workshop on Deep Inelastic Scattering off Polarized Targets: Theory meets Experiment, DESY-Zeuthen 1997, eds. J. Blümlein et al. (DESY report 97-200, 1997)
- The E-154 Collaboration (K. Abe et al.), Phys. Lett. B405 (1997) 180; The SMC Collaboration (B. Adeva et al.), CERN preprint CERN-EP-98-086 (1998)
- M. Gluck, E. Reya, M. Stratmann and W. Vogelsang, Phys. Rev. D53 (1996) 4775
- T. Gehrmann and W.J. Stirling, Phys. Rev. D53 (1996) 6100; M. Stratmann, hep-ph/9710379; D. de Florian, O.A. Samapayo and R. Sassot, Phys. Rev D57 (1998) 5803; L.E. Gordon, M. Goshtasbpour and G.P. Ramsey, hep-

ph/9803351; E. Leader, A.V. Sidorov and D.B. Stamenov, hep-ph/9808248

- B. Badełek and J. Kwieciński, Phys. Lett. B418 (1998) 229
- 30. P. Ratcliffe, Nucl. Phys. B223 (1983) 45
- The New Muon Collaboration (M. Arneodo et al.), Phys. Rev. D50 (1994) R1
- 32. The SMC Collaboration (B. Adeva et al.), CERN preprint EP-98-085 (1998)
- 33. S.D. Bass, in preparation
- 34. The E-143 Collaboration (K. Abe et al.), Phys. Lett. ${\bf B364}$ (1995) 61

- 35. The H1 Collaboration (C. Adloff et al.), Nucl. Phys. **B497** (1997) 3
- The ZEUS Collaboration (J. Breitweg et al.), Phys. Lett. B407 (1997) 432
- 37. A. Donnachie and P.V. Landshoff, Z Physik C61 (1994) 139
- 38. S.D. Bass, M.M. Brisudová and A. De Roeck, hepph/9710518 (1997), in Proc. Workshop on Physics with Polarized Protons at HERA, eds. J. Blümlein et al. (DESY report 97-200, 1997)
- 39. TJNAF experiment E-97-003, J-P. Chen et al